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DIRECT BUTYROLACTONE PRODUCTION USING TIN HYDRIDE
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Abstract: Use of HSnBusg for the reductive cyclization of suitable alpha-bromo allylic
esters affords 2,3-disubstituted butyrolactones.

The butyrolactone functionality appears in numerous natural products such as
pilocarpine 1 (1) and deoxypodorhizon 2 (2). Biological activity found in many of these
compounds has prompted considerable synthetic effort (3).
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Typical published examples of straightforward sequences to 2,3-disubstituted butyro-
lactones include Michael addition/enolate alkylation (4) and dianion coupling’selective
hydrolysis (5) methodologies. An alternative route to such targets involves a convergent
strategy that employs the template effect provided by a suitably functionalized starting
material in which an ether oxygen links the two halves of the precursor molecule. This
approach was pioneered by Stork (6) and by Ueno (7) in their development of bromoacetal
cyclization chemistry (i.e. 3 to 4 to 8). Unfortunately, syntheses of complex examples of 3
are quite challenging and several steps are required to go from 4 to 5. Therefore, we have
investigated a modified free radical template sequence, employing a bromoester in place of
the bromoacetal.
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Many potential substrates for a radical chain-based cyclo-dehalogenation route to
butyrolactones are easily accessible due to the existence of efficient procedures for prepar-
ing esters (8), for alpha-halogenating carboxylic acid dianions (9), and for generating allyl
alcohol derivatives (10). Although the literature suggests (11) that haloester allyl ether
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cyclo-dehalogenations are often sluggish, we now report that, for many of the substrates
depicted below, this cyclization proceeds efficiently.

As a model for targets of the pilocarpine type, we transformed (12) commercially
available acid halide 6 into ester 7 (chromatographed yield = 77%). Slow addition of a
HSnBug solution containing 15 mole % of AIBN to a refluxing solution of 7 in dry benzene
followed by heating at reflux for 10 hours, led to the desired lactone 8 (chromatographed
yield = 50% (12)), presumably via formation of the intermediate benzylic radical 9. A
recovered non-polar fraction proved to be the dehalogenated ester 10, which was isolated in
ca. 35% yield. Similar experiments performed with the analogous bromoesters 11a and 13
gave smooth conversion to the desired lactones 12a and 14 (13) (chromatographed yields of
42.5% and 39%, respectively). A preliminary experiment using bromoester 11b gave only a
small amount of lactone 12b (chromatographed yield = 19.6%) (14).
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Isolation of the products from a HSnBuj reaction often (15) involves removal of
benzene from the cooled reaction mixture, dilution with acetenitrile and ligroin, separation
of the resulting immiscible layers, and removal of the volatiles from the acetonitrile layer.
Alternatively, evaporation of (15) of the crude benzene reaction mixture to a syrup and
direct column chromatography generally afforded a better recovery of the lactonic fraction.

Using substrate 11a, we tried to discern any effect caused by the rate of addition of the
HSnBug/AIBN solution to the refluxing bromoester. Initial rapid mixing of 11a, HSnBus3,
and AIBN followed by prolonged heating of the resulting benzene solution gave only a low
yield of butyrolactone. Addition of HSnBu3/AIBN over 1.5 hrs. produced 37% of lactone
12a and 45% of ester 15 (which contained, by proton NMR, 2-3 % of 11a). When the
addition was extended over 3.8 hrs., we isolated 42.5% of analytically pure lactone 12a. A
5 hour rate of addition afforded 39.5% of 12a and only 32% of 15. TLC of the crude reaction
mixture alsc indicated the presence of polar by-products.



The allylic esters 16, 17, and 18 (readily available by esterification of acid chloride 6
with allyl, crotyl, and dimethylally! alcohols, respectively) gave crude reaction mixtures
exhibiting a butyrolactone carbony! IR stretch. The butyrolactone corresponding to 18 (16)
was obtained analytically pure in a chromatographed yield of 33.6%.
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As a model for unsymmetrical lignans, we attempted the cyclization of bromoester 19.
Preparation of this substrate involved reduction (10) of methyl ester 20 (-17°C; 1.4 eq.
LiAlH4; THF; 1 hr.; recryst, from CCly; mp 72-73°C) as well as bromination (9) of the
dianion derived from 21 (-20°C -RT; 2 eq LDA; excess CBry; recryst. from CCly; mp 84-
85°C). After the bromoacid was converted into the acid chloride ((COCl)s: heat at 530°C in
benzene), esterification (THF; RT; 2 eq. pyridine)'followed by chromatography gave pure
19. Cyclization via slow addition of HSnBug/AIBN in benzene to a refluxing solution of 19
in benzene provided the desired (5a) butyrolactone 2 (diastereoisomeric mixture = ca. 4:1
trans:cis (by comparison with authentic material) (chromatographed yield = 40%)).
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Investigations are now underway to optimize and to extend this cyclization approach.
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